Neutron Source
   HOME

TheInfoList



OR:

A neutron source is any device that emits
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear power. Neutron source variables include the energy of the neutrons emitted by the source, the rate of neutrons emitted by the source, the size of the source, the cost of owning and maintaining the source, and government regulations related to the source.


Small devices


Spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakdo ...
(SF)

Some
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s undergo SF with emission of neutrons. The most common spontaneous fission source is the isotope
californium Californium is a radioactive chemical element with the symbol Cf and atomic number 98. The element was first synthesized in 1950 at Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory), by bombarding ...
-252. 252Cf and all other SF neutron sources are made by irradiating
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
or a
transuranic element The transuranium elements (also known as transuranic elements) are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of these elements are unstable and decay radioactively into other elements. ...
in a nuclear reactor, where neutrons are absorbed in the starting material and its subsequent reaction products, transmuting the starting material into the SF isotope. 252Cf neutron sources are typically 1/4" to 1/2" in diameter and 1" to 2" in length. A typical 252Cf neutron source emits 107 to 109 neutrons per second when new; but with a half-life of 2.6 years, neutron output drops by half in 2.6 years. A typical 252Cf neutron source costs $15,000 to $20,000.


Radioisotopes which alpha decay; mixed with a light element

Neutrons are produced when
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produce ...
s hit any of several light isotopes including isotopes of beryllium, carbon, or oxygen. Thus, one can make a neutron source by mixing an alpha-emitter such as
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather t ...
,
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
, or
americium Americium is a synthetic radioactive chemical element with the symbol Am and atomic number 95. It is a transuranic member of the actinide series, in the periodic table located under the lanthanide element europium, and thus by analogy was na ...
with a low-atomic-weight isotope, usually by blending powders of the two materials. Alpha neutron sources typically produce ~106–108 neutrons per second. An alpha-beryllium neutron source may produce about 30 neutrons per 106 alpha particles. The useful lifetime for such sources depends on the half-life of the radioisotope. The size and cost of these neutron sources are comparable to spontaneous fission sources. Usual combinations of materials are
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
-
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form mi ...
(PuBe),
americium Americium is a synthetic radioactive chemical element with the symbol Am and atomic number 95. It is a transuranic member of the actinide series, in the periodic table located under the lanthanide element europium, and thus by analogy was na ...
-beryllium (AmBe), or americium-
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid el ...
(AmLi).


Radioisotopes which decay with high-energy photons co-located with beryllium or deuterium

Gamma radiation with an energy exceeding the neutron binding energy of a nucleus can eject a neutron (
photoneutron Photodisintegration (also called phototransmutation, or a photonuclear reaction) is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle. T ...
). Two example reactions are: *9 Be + >1.7 MeV photon → 1 neutron + 2 4He *2 H (
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
) + >2.26 MeV photon → 1 neutron + 1H


Sealed-tube neutron generators

Some accelerator-based
neutron generator Neutron generators are neutron source devices which contain compact linear particle accelerators and that produce neutrons by fusing isotopes of hydrogen together. The fusion reactions take place in these devices by accelerating either deu ...
s induce fusion between beams of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
and/or
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus o ...
ions and
metal hydride In chemistry, a hydride is formally the anion of hydrogen( H−). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of ...
targets which also contain these isotopes.


Medium-sized devices


Plasma focus and plasma pinch devices

The
dense plasma focus A dense plasma focus (DPF) is a type of plasma generating system originally developed as a fusion power device starting in the early 1960s. The system demonstrated scaling laws that suggested it would not be useful in the commercial power role, a ...
neutron source produces controlled
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manifest ...
by creating a dense plasma within which heats ionized
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
and/or
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus o ...
gas to temperatures sufficient for creating fusion.


Inertial electrostatic confinement

Inertial electrostatic confinement Inertial electrostatic confinement, or IEC, is a class of fusion power devices that use electric fields to confine the plasma rather than the more common approach using magnetic fields found in magnetic fusion energy (MFE) designs. Most IEC devi ...
devices such as the Farnsworth-Hirsch
fusor A fusor is a device that uses an electric field to heat ions to nuclear fusion conditions. The machine induces a voltage between two metal cages, inside a vacuum. Positive ions fall down this voltage drop, building up speed. If they collide in ...
use an
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
to heat a plasma to fusion conditions and produce neutrons. Various applications from a hobby enthusiast scene up to commercial applications have developed, mostly in the US.


Light ion accelerators

Traditional particle accelerators with hydrogen (H), deuterium (D), or tritium (T) ion sources may be used to produce neutrons using targets of deuterium, tritium, lithium, beryllium, and other low-Z materials. Typically these accelerators operate with energies in the > 1 MeV range.


High-energy

bremsstrahlung ''Bremsstrahlung'' (), from "to brake" and "radiation"; i.e., "braking radiation" or "deceleration radiation", is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typicall ...
photoneutron/photofission systems

Neutrons are produced when photons above the nuclear binding energy of a substance are incident on that substance, causing it to undergo
giant dipole resonance Giant resonance is a high-frequency collective excitation of atomic nuclei, as a property of many-body quantum systems. In the macroscopic interpretation of such an excitation in terms of an oscillation, the most prominent giant resonance is a col ...
after which it either emits a neutron (
photoneutron Photodisintegration (also called phototransmutation, or a photonuclear reaction) is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle. T ...
) or undergoes fission (
photofission Photofission is a process in which a nucleus, after absorbing a gamma ray, undergoes nuclear fission and splits into two or more fragments. The reaction was discovered in 1940 by a small team of engineers and scientists operating the Westing ...
). The number of neutrons released by each fission event is dependent on the substance. Typically photons begin to produce neutrons on interaction with normal matter at energies of about 7 to 40
MeV In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacu ...
, which means that radiotherapy facilities using megavoltage X-rays also produce neutrons, and some require neutron shielding. In addition, electrons of energy over about 50
MeV In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacu ...
may induce giant dipole resonance in nuclides by a mechanism which is the inverse of
internal conversion Internal conversion is a non-radioactive, atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal ...
, and thus produce neutrons by a mechanism similar to that of photoneutrons.


Large devices


Nuclear fission reactors

Nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radio ...
within a reactor, produces many neutrons and can be used for a variety of purposes including power generation and experiments.
Research reactor Research reactors are nuclear fission-based nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritim ...
s are often specially designed to allow placement of material samples into a high-neutron-flux environment.


Nuclear fusion systems

Nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manifest ...
, the fusing of heavy isotopes of hydrogen, also has the potential to produces large numbers of neutrons. Small scale fusion systems exist for (plasma) research purposes at many universities and laboratories around the world. A small number of large scale fusion experiments also exist including the
National Ignition Facility The National Ignition Facility (NIF) is a laser-based inertial confinement fusion (ICF) research device, located at Lawrence Livermore National Laboratory in Livermore, California, United States. NIF's mission is to achieve fusion ignition w ...
in the US, JET in the UK, and soon the ITER experiment currently under construction in France. None are yet used as neutron sources.
Inertial confinement fusion Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with thermonuclear fuel. In modern machines, the targets are small spherical pellets about the size of ...
has the potential to produce orders of magnitude more neutrons than spallation. This could be useful for
neutron radiography Neutron imaging is the process of making an image with neutrons. The resulting image is based on the neutron attenuation properties of the imaged object. The resulting images have much in common with industrial X-ray images, but since the image i ...
which can be used to locate hydrogen atoms in structures, resolve atomic thermal motion and study collective excitation of nuclei more effectively than
X-rays An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 Picometre, picometers to 10 Nanometre, nanometers, corresponding to frequency, ...
.


High-energy particle accelerators

A spallation source is a high-flux source in which
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s that have been accelerated to high energies hit a target, prompting emission of neutrons. The world's strongest neutron sources tend to be spallation based as high flux fission reactors have an upper bound of neutrons produced. As of 2022, the most powerful neutron source in the world is the
Spallation Neutron Source The Spallation Neutron Source (SNS) is an accelerator-based neutron source facility in the U.S. that provides the most intense pulsed neutron beams in the world for scientific research and industrial development.In 2007, SNS was entered into thG ...
in Oak Ridge, Tennessee,{{cite web , title=SUF Spallation Neutron Source (S... {{! U.S. DOE Office of Science (SC) , url=https://science.osti.gov/bes/suf/User-Facilities/Neutron-Scattering-Facilities/SNS#:~:text=The%20Spallation%20Neutron%20Source%20(SNS,a%20power%20of%201%20MW. , website=science.osti.gov , access-date=19 October 2022 , date=29 April 2022 with the
European Spallation Source The European Spallation Source ERIC (ESS) is a multi-disciplinary research facility based on the world's most powerful pulsed neutron source. It is currently under construction in Lund, Sweden. The ESS Data Management and Software Centre (DMSC) ...
in
Lund Lund (, , ) is a city in the southern Swedish provinces of Sweden, province of Scania, across the Øresund, Öresund strait from Copenhagen. The town had 91,940 inhabitants out of a municipal total of 121,510 . It is the seat of Lund Municipali ...
, Sweden under construction to become the world's strongest intermediate duration pulsed neutron source. Subcritical nuclear fission reactors are proposed to use spallation neutron sources and can be used both for
nuclear transmutation Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed. A transmutatio ...
(e.g. production of medical radionuclides or synthesis of precious metals) and for power generation as the energy required to produce one spallation neutron (~30 MeV at current technology levels) is almost an order of magnitude lower than the energy released by fission (~200 MeV for most fissile actinides).


Neutron flux

For most applications, higher
neutron flux The neutron flux, φ, is a scalar quantity used in nuclear physics and nuclear reactor physics. It is the total length travelled by all free neutrons per unit time and volume. Equivalently, it can be defined as the number of neutrons travellin ...
is better (since it reduces the time needed to do the experiment, acquire the image, etc.). Amateur fusion devices, like a
fusor A fusor is a device that uses an electric field to heat ions to nuclear fusion conditions. The machine induces a voltage between two metal cages, inside a vacuum. Positive ions fall down this voltage drop, building up speed. If they collide in ...
, generate only about 300 000 neutrons per second. Commercial fusor devices can generate on the order of 109 neutrons per second, hence a usable flux of less than 105 n/(cm² s). Large neutron beams around the world achieve much greater flux. Reactor-based sources now produce 1015 n/(cm² s), and spallation sources generate > 1017 n/(cm² s).


See also

*
Neutron emission Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and ...
*
Neutron generator Neutron generators are neutron source devices which contain compact linear particle accelerators and that produce neutrons by fusing isotopes of hydrogen together. The fusion reactions take place in these devices by accelerating either deu ...
, commercial devices *
Neutron temperature The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
('fast' or 'slow') * Startup neutron source *
Zetatron Thermo Electron Corporation (NYSE: TMO) (incorporated 1956) was a major provider of analytical instruments and services for a variety of domains. It was founded in 1956 by George N. Hatsopoulos, an MIT PhD in mechanical engineering. Initial fun ...
* A Subcritical nuclear reactor relies on an "external" neutron source


References


External links


Neutronsources.orgScience and Innovation with Neutrons in Europe in 2020 (SINE2020)
Source Source may refer to: Research * Historical document * Historical source * Source (intelligence) or sub source, typically a confidential provider of non open-source intelligence * Source (journalism), a person, publication, publishing institute o ...
Nuclear technology